un 2 00 9 ON THE PURE VIRTUAL BRAID GROUP PV

نویسنده

  • J. WU
چکیده

In this article, we investigate various properties of the pure virtual braid group PV3. From its canonical presentation, we obtain a free product decomposition of PV3. As a consequence, we show that PV3 is residually torsion free nilpotent, which implies that the set of finite type invariants in the sense of GoussarovPolyak-Viro is complete for virtual pure braids with three strands. Moreover we prove that the presentation of PV3 is aspherical. Finally we determine the cohomology ring and the associated graded Lie algebra of PV3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 4 Virtual Braids

Just as classical knots and links can be represented by the closures of braids, so can virtual knots and links be represented by the closures of virtual braids [17]. Virtual braids have a group structure that can be described by generators and relations, generalizing the generators and relations of the classical braid group. This structure of virtual braids is worth study for its own sake. The ...

متن کامل

Pure Virtual Braids Homotopic to the Identity Braid

Two virtual link diagrams are homotopic if one may be transformed into the other by a sequence of virtual Reidemeister moves, classical Reidemeister moves, and self crossing changes. We recall the pure virtual braid group. We then describe the set of pure virtual braids that are homotopic to the identity braid.

متن کامل

un 2 00 3 The n th root of a braid is unique up to conjugacy

We prove a conjecture due to Makanin: if α and β are elements of the Artin braid group Bn such that α k = β for some nonzero integer k , then α and β are conjugate. The proof involves the Nielsen-Thurston classification of braids. AMS Classification 20F36; 20F65.

متن کامل

un 2 00 8 A note on Artin - Markov normal form theorem for braid groups ∗

In a recent paper by L. A. Bokut, V. V. Chaynikov and K. P. Shum in 2007, Braid group Bn is represented by Artin-Burau’s relations. For such a representation, it is told that all other compositions can be checked in the same way. In this note, we support this claim and check all compositions.

متن کامل

J un 2 00 5 THE N - EIGENVALUE PROBLEM AND TWO APPLICATIONS

We consider the classification problem for compact Lie groups G ⊂ U(n) which are generated by a single conjugacy class with a fixed number N of distinct eigenvalues. We give an explicit classification when N = 3, and apply this to extract information about Galois representations and braid group representations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009